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New Findings
� What is the central question of this study?

What are the dynamical rules governing interstitial cell of Cajal (ICC)-generated slow wave
contractions in the small intestine, as reflected in their phase response curve and state space?

� What is the main finding and its importance?
The phase response curve has a region of phase advance surrounding a phase delay peak. This
pattern is important in generating a stable synchrony within the ICC network and is related
to the state space of the ICC; in particular, the phase delay peak corresponds to the unstable
equilibrium point that threads the ICC’s limit cycle.

Interstitial cells of Cajal (ICCs) generate electrical oscillations in the gut. Synchronization
of the ICC population is required for generation of coherent electrical waves (‘slow waves’)
that cause muscular contraction and thereby move gut content. The phase response curve
(PRC) is an experimental measure of the dynamical rules governing a population of oscillators
that determine their synchrony and gives an experimental window onto the state space of the
oscillator, its dynamical landscape. We measured the PRC of slow wave contractions in the mouse
small intestine by the novel combination of diameter mapping and single pulse electrical field
stimulation. Phase change (τ) was measured as a function of old phase (φ) and distance from the
stimulation electrode (d). Plots of τ(φ, d) showed an arrowhead-shaped region of phase advance
enclosing at its base a phase delay peak. The phase change mirrored the perturbed pattern of
contraction waves in response to a pulse. The (φ, d) plane is the surface of a displacement tube
extending from the limit cycle through state space. To visualize the state space vector field on
this tube, latent phase (φlat) was calculated from τ. At the transition from advance to delay,
isochrons made boomerang turns before tightening and winding around the phase delay peak
corresponding to the unstable equilibrium point that threads the limit cycle. This isochron
foliation had previously been observed in oscillator models such as the Fitzhugh–Nagumo
but has not been demonstrated experimentally. The spatial extension of the PRC afforded by
diameter mapping allows a better understanding of the dynamical properties of ICCs and how
they synchronize as a population.
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Introduction

Any physiological system is driven by many
interdependent variables, which one may call the
system’s ‘state variables’ (Garfinkel, 1983; Strogatz, 2015).
For example, in an electrically excitable cell, such as
a heart muscle cell, the state variables would include
membrane potential (V) and intracellular calcium
concentration ([Ca2+]i). If both V and [Ca2+]i oscillate
together (Fig. 1A), then plotting V against [Ca2+]i will
trace a loop (Fig. 1B). The two-dimensional area of this
plot is the ‘state space’ of the heart cell, i.e. each state
variable is an axis of state space and state space has as
many dimensions as there are state variables. The loop is
the cell’s ‘trajectory’ through state space. Another name
for state space is ‘phase space’ (Nolte, 2010).

If the heart cell is given a short electrical stimulus, it
will be displaced, probably along the V axis, to a new
point in state space (Fig. 1C). The trajectory then winds
back towards the loop it made before the stimulus, i.e. it
returns to its previous oscillation. Given that the displaced
trajectory returns to the loop in the mathematical ‘limit’
of time going to infinity, the loop is called a ‘limit cycle’.
At several points on the trajectory’s return to the limit
cycle, plot with an arrow its speed (rate of change of
V and [Ca2+]i), by the arrow’s length, and direction
(relative rate of change of V and [Ca2+]i; Fig. 1D). Then
give the cell more stimuli at different times, so that it
is displaced to various points in state space, and again
measure the trajectory speeds and directions as they
return to the limit cycle. The resulting set of speeds
and directions is the ‘vector field’ of the state space
(Fig. 1E).

The vector field gives an overall picture of the dynamics
of the heart cell without plotting individual trajectories.
The field winds around to a point at the centre of the limit
cycle where the speed (arrow length) goes to zero. This
point is called an ‘unstable equilibrium’ because if the
cell is displaced to this exact point oscillations will stop
completely, but with the slightest push from this point
(for instance due to environmental noise) the trajectory
will wind back to the limit cycle.

Another way of picturing state space dynamics is
with isochrons (Glass & Winfree, 1984). Instead of
measuring trajectory speed and direction, measure the
time taken to reach some fixed point on the limit cycle
from each displaced point. Then plot the contours of
this time; these are the isochrons (Fig. 1F). The closer
together the isochrons, the slower the trajectory, i.e.
there is an inverse relationship between the spacing of
isochrons and vector field speed (the exact relationship is
eqn (2)).

A mathematical model of a system may consist of a set of
differential equations; specifically, one first-order ordinary
differential equation (ODE) for each state variable that

gives the variable’s rate of change as a function of one
or more of the complete set of state variables and some
constants (parameters) (Garfinkel, 1983). The state space
vector field can be calculated directly from these ODEs. In
an experiment, one cannot usually measure all the state
variables, usually just one, and so one cannot measure
the vector field. But one can measure the isochrons, the
time taken to return to some point in the oscillation,
irrespective of what state variable is measured. This makes
isochrons a powerful experimental tool.

If its trajectory does not depart significantly from a
limit cycle, a system can be described by a single ODE
for its position on the limit cycle, its phase, rather than
by a set of ODEs, one for each state variable (Levinson,
1950; Winfree, 1967). This ODE is a ‘phase equation’, and
its greater simplicity allows faster computer simulation
and easier mathematical analysis. For a pair of interacting
oscillators, if each can only slow or speed up the progress
of the other around its limit cycle, but not push it off
its limit cycle, then each oscillator can be described by
a phase equation consisting of only three components:
the speed at which the oscillator would progress on its
limit cycle without interaction (its natural frequency), the
strength of interaction and an interaction function that
describes how much to speed up or slow down depending
on the phase difference between oscillators (Schwemmer
& Lewis, 2012). The coupled phase equations constitute
a ‘weakly coupled oscillator model’. Here, ‘weak coupling’
refers specifically to the fact that the oscillators do not
push each other off their limit cycles.

The phase response curve (PRC) measures the response
of an oscillator to a short stimulus. It is the plot of the
change in the oscillator’s phase as a function of the phase
at which the stimulus was given. The PRC has a long history
in circadian rhythms and the heart beat (Glass & Winfree,
1984). For much of that history, its significance was more
or less technical. It could be used to control rhythms. An
electrical stimulus given at the right phase of the heart’s
oscillation could induce arrhythmia or restore rhythmicity
(Winfree, 1987). It was the insight of Arthur Winfree,
summarized in his The Geometry of Biological Time
(Winfree, 1980), that the PRC has a deeper significance
that ties together isochrons, state space and the phase
equation. He realized that the measurement of the PRC was
equivalent to measuring isochrons, because both measure
the time of return to an oscillation after displacement
by a stimulus (Winfree, 1967; Guckenheimer, 1975;
Glass & Winfree, 1984). Furthermore, the interaction
function is simply a smoothed version of the PRC
(Ermentrout & Rinzel, 1984; Kuramoto, 1984). Winfree’s
work catalysed the development, by him and others,
of a coherent and powerful mathematical theory of
the PRC, phase equations and state space (summarized
by Schwemmer & Lewis, 2012). Nevertheless, PRCs
are rarely measured outside of the circadian field and
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then are rarely interpreted in relationship to state space
dynamics.

Here, we measure the PRC, and thereby the state space
isochrons, of the interstitial cells of Cajal (ICCs). The small
intestine has rhythmic contractions that travel its length in
waves (Parsons & Huizinga, 2015). The rhythm originates
with a network of ICCs that runs the length of the intestine.
The membrane potential of each ICC oscillates, and these
electrical oscillations (‘slow waves’) spread out into the
muscle and cause corresponding waves of contraction. We
measure the PRC using the method of diameter mapping
coupled with single pulse electrical field stimulation."

Methods

Ethical approval

All procedures were approved and carried out in
accordance with regulations of the Animal Research
Ethics Board (approval no. AUP 14-12-49) of McMaster
University, following the guidelines and policy statements
established by the Canadian Council on Animal Care and
legislation as presented in the Animals for Research Act,
Ontario (1980) and administered by the Ontario Ministry
of Agriculture and Food. The authors acknowledge the
ethical principles of Experimental Physiology and confirm
that the study was conducted in compliance with the

animal ethics checklist as detailed by Grundy (2015).
Fourteen-week-old, female CD1 mice were obtained from
Charles River Laboratories (Sherbrooke, QC, Canada) and
fed ad libitum on standard chow. To obtain intestines, 14
mice were killed by cervical dislocation after induction of
general anaesthesia with isoflurane, following an approved
standard operating procedure of the Animal Research
Ethics Board.

Organ bath and diameter mapping

Lengths of small intestine were placed into an organ
bath monitored by 10 video cameras for diameter
mapping. Intestine preparation, the organ bath and
camera apparatus were as described previously (Parsons
& Huizinga, 2015) except for the following alterations.
Instead of statically filling the intestine from a pressure
reservoir (a Trendelenburg type apparatus), the lumen
was continuously perfused. A Peri-Star Pro pump (World
Precision Instruments, Sarasota, FL, USA) was used to
pump oxygenated Krebs solution into the proximal end
of the intestine at a rate of �1.5 ml min−1. The inflow
was warmed by passing the tube first through the bath.
Outflow from the proximal end of the intestine was
through Intramedic PE205 tubing (Becton Dickinson,
Franklin Lakes, NJ, USA) passed through a hole in
a rubber window at the end of the bath and into a

V

[Ca2+]i

V

[Ca2+]i

A

B C D E F
stimulus

stimulus

cb

Figure 1. State space
A, intracellular calcium concentration ([Ca2+]i) and membrane potential (V) oscillations in a heart muscle
cell or other ‘excitable cell’. b and c refer to the blue and red trajectories in panel B and C, respectively.
B, state space of the heart cell. A graphical plot of state space (also called phase space) is also known as
a ‘phase portrait’. The blue trajectory is the limit cycle of the heart cell. C, an electrical stimulus is given
that displaces the cell along the V axis (orange). The trajectory then winds back to the limit cycle (red).
D, vector representation of the return trajectory. E, the state space vector field. The central red point is
the unstable equilibrium. Note that other arrangements of equilibria (stable and unstable) are possible
(Strogatz, 2015). F, isochrons radiating out from the unstable equilibrium.
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beaker. Instead of a ‘kit-kat’ intestine holder with five
0.5-cm-wide lanes, we used one with three 1-cm-wide
lanes (Fig. 2). Instead of two aqualifter pumps, the
bath solution was circulated by a brushless submersible
micro pump (Docooler, Shenzhen, Guangdong, China).
A plastic ‘T’ junction adaptor, perforated with a line of
holes along the top edge and stoppered at the ends of
the top edge, was attached to the outflow. This design
was compact and gave a strong, approximately laminar
flow. To prevent occasional luminal air bubbles lifting
the intestine out of the lane, a criss-cross ladder of
40-μm-diameter actuator wire (Dynalloy, Tustin, CA,
USA), strung between two rods, was placed over the kit-kat
(Fig. 2).

Diameter maps (Dmaps) were calculated from video
recordings with custom ImageJ (US National Institutes
of Health, Bethesda, MD, USA) plugins, as described
previously (Parsons & Huizinga, 2015). Briefly, a Dmap
was calculated for each camera, and the Dmaps were
then stitched together by matching their edges. A set
of plugins (‘DMapLE’) for Dmap creation and stitching
can be freely downloaded from the website of S.P.P.,
www.scepticalphysiologist.com/code/code.html.

Electrical field stimulation

All experiments were carried out in the presence of 0.5 mM

lidocaine to block neural activity. The central lane of the
kit-kat held an intestine (Fig. 2). A pair of electrodes
pointed down along opposing inside edges of the central
lane, held in place by posts made of plastic tubing that
squeeze fitted into the outer lanes (Fig. 2). An electrode
consisted of 6 mm of exposed 0.2-mm-diameter platinum
wire connected to a wire lead with heat-shrink-sealed
junction. The intestine was held taut enough so that it ran

ppt

1 cm

et

el

wr

pt

Figure 2. Electrical field stimulation
A pair of platinum wire electrodes (et) were positioned either
side of the intestine, held in place by posts (pt) fitted in the
outer lanes of the kit-kat. A criss-cross wire ladder (wr) was
used to keep the intestine in the central lane if gas entered
the lumen. Electroluminescent wire (el) lighted in synchrony
with stimulation.

along the centre of the lane, not touching the electrodes.
A tendency to bend meant that sometimes small blocks
had to be placed in the lane to push the intestine towards
the centre of the electrode pair. The leads of an electrode
pair were connected to a Grass S48 stimulator (Natus,
Pleasanton, CA, USA).

To record stimulation, an electroluminescent (EL) wire
(Lerway, Shenzhen, Guangdong, China) was positioned
along the length of the kit-kat, at one side just within the
frame of the cameras (Fig. 2) and connected to a Grass
stimulator. The sync-out port of this ‘control’ stimulator
was wired to the sync-in ports of two ‘slave’ stimulators,
each connected to a pair of stimulation electrodes. The
slave stimulators had their repeat mode set to off, so that
they fired a pulse only in response to the control stimulator,
with the pulse amplitude and duration set by the slave
itself. In this way, the EL wire and both stimulation
electrode pairs were synchronized, but could be adjusted
independently for pulse duration and amplitude. The
control stimulator was set to 60 V (enough to light the
EL wire), 300 ms duration (comfortably longer than the
video frame interval of 33 ms) and a 0.02 Hz frequency
or 50 s interval (long enough to allow the contraction
pattern to re-equilibrate between pulses). The slave
stimulators were set to either 50 or 80 V and 15 or 30 ms
duration.

Parallel with Dmap calculation, for each frame a
rectangular area over the EL wire was averaged along
the direction orthogonal to the wire (and the kit-kat
and intestine). This produced a stimulation map (Smap)
showing the lighting of the EL wire. Stimulation times
were detected in the Smap by a simple threshold algorithm
(greater than the mean plus a multiple of the SD of the
background).

Phase response curve

A custom ImageJ plugin was written to calculate phase
response curves from a Dmap. For each pulse, a
rectangular region of interest (ROI) of 18 s × 5 cm
was made, covering 2.5 cm each side of the electrode
position and from 13.5 s before stimulation to 4.5 s after.
The plugin first applied a median filter to the ROI using
the ImageJ ‘Remove Outliers’ command with a radius of
six pixels (0.48 mm, 180 ms) and threshold of 2, both
bright and dark filtering. This removed speckles caused
by bubbles generated at the electrodes and picked up by
the diameter mapping algorithm. The plugin then found
contractions (diameter minima) within the ROI using a
two-dimensional Gaussian derivative steerable filter, as
described previously (Parsons & Huizinga, 2015). Within
the ROI, for each pixel row along the spatial axis (d)
the following were calculated by the plugin (Fig. 5A): the
average interval of all complete contraction cycles before
stimulation (T); the interval from the last contraction
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Table 1. Gaussian components of the model phase response
curve (eqn (1) and Fig. 9D)

a cφ σφ cd σd

−0.45 0.6 0.17 0 0.4
−0.1 0.4 0.06 0 1

1.1 0.48 0.05 0 0.23
0.35 0.38 0.08 0 0.25

before stimulation to stimulation (phase at stimulation,
φ); and the interval from the last contraction before
stimulation to the next contraction (phase change, τ).
Values of φ and τ were normalized to T.

Contour plots of τ(φ, d) were calculated in two stages.
First, the vector of (τ, φ, d) samples was used to interpolate
τ values over a regularly spaced grid in the (φ, d) plane
using the MATLAB (MathWorks, Natick, MA, USA)
function ‘meshgrid’ (0.05 spacing in φ; 0.2 cm spacing
in d). This grid was then converted to a contour map with
the MATLAB function ‘contour’.

A model PRC was constructed from the superposition
of four two-dimensional Gaussians, as follows:

τ(φ, d) = 1 +
4∑

j =1

a(j ) exp

[
−

(
φ − cφ(j )

)2

2σ2
φ(j )

−
(
d − cd(j )

)2

2σ2
d(j )

]
(1)

The model was fitted by eye to approximate an
archetypal or average PRC, rather than by regression to
a single PRC. Parameter values are given in Table 1. The
added 1 at the left of the equation’s right-hand side follows
from the definition of τ = 1 as refractory (see Results).

Results

Response to electrical field stimulation

In the presence of 0.5 mM lidocaine, to block neural
activity, waves of contraction travelled distally along the
small intestine. They had a stable velocity (�1 cm s−1) and
frequency (�0.8 Hz; Parsons & Huizinga, 2015), forming a
regular pattern of diagonals in the Dmap (Fig. 3A). Single
pulses of electrical field stimulation disturbed the wave
pattern in a manner that varied widely from pulse to pulse
(Fig. 3A). A contraction wave, as defined by a diameter
minimum (red lines in Fig. 3), often terminated before
reappearing along its natural line of propagation (dashed
black lines in Fig. 3). At the termination or initiation
point of a wave, its phase is singular (indeterminate),
a phase singularity. Each pulse response was classified
by an m:n number pair, where m was the number

of terminating singularities and n was the number of
initiating singularities (upper right corner of each panel in
Fig. 3A). Where m � n, either a wave terminated but did
not reinitiate (m > n) or a wave initiated where there was
none before (m < n). When either occurs, the unpaired
singularity is called a dislocation, a term originating from
crystallography; m−n is the topological charge or winding
number of the dislocation (Berry, 1998).

There was never a simple, clean break in a wave such
that the resulting two singularities remained opposed
along the natural line of the wave (Fig. 3B). Instead, the
wave sped up as it approached its terminating singularity,
in the Dmap bending to the left from its natural line
(Fig. 3C). The initiating singularity’s wave either remained
on its natural line or was faster near its singularity, in the
Dmap bending to the right of its natural line. There was
therefore a lag between the singularities, and they would
interdigitate (Fig. 3C). In dislocation responses (lower
panels of Fig. 3A), the wave after the last terminating
singularity sped up so much that it transferred onto the
natural line of that singularity’s wave (Fig. 3C and D) to
form the dislocation, and this transfer occurred across the
next few waves until eventually the disturbance petered
out. This was the reason for giving the pulses at such a low
frequency (0.02 Hz, 50 s cycle−1), to allow the system to
re-equilibrate after dislocation.

Six intestines were stimulated, each over four 20 min
periods. Each period consisted of a maximum of 24
pulses (at 0.02 Hz) of the same amplitude and duration,
applied synchronously at two electrode pairs separated
by either 7 or 11 cm. The pulse amplitude and duration
were one of the four possible permutations of 50 or
80 V amplitude and 15 or 30 ms duration. Therefore
the total data consisted a maximum of 1152 pulse
responses (6 intestines × 4 periods × 24 pulses × 2
electrode pairs). 1109 pulse responses were recorded
and classed either by their m:n number or as ‘not
equilibrated’ (NE) when there was a disturbance in the
wave pattern before the pulse that made interpretation
of the response impossible. This was either due to the
nearby presence of spontaneous dislocations that occur at
frequency steps (Parsons & Huizinga, 2015) or because
the wave pattern had not re-equilibrated after the last
pulse.

Apart from NE (23%), the dominant responses were
0:0 (32%) and 1:1 (20%). The rest of the response classes
had frequencies of <6% (Fig. 4A). There was an increase
in both the mean frequency of singularity (m > 0) and
dislocation (m > n) responses with increasing pulse
amplitude and duration (Fig. 4B and C), but these were not
significant (none with P < 0.05) as assessed by multiple
Student’s paired t tests and two-way ANOVA. Of the 160
dislocation responses, all but six had a topological charge
of +1. Those six were two 3:1, two 4:2, a 5:3 and a
3:0.

C© 2017 The Authors. Experimental Physiology C© 2017 The Physiological Society
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Phase response curve

Three measurements were made for each pulse, for each
point in the neighbourhood of the electrode, as follows
(Fig. 5A): distance (d) relative to the electrode (d = 0);
the interval from the last contraction before the pulse to
the pulse (phase at pulse, φ); and the interval from the
last contraction before the pulse to the next contraction
(phase change, τ). Values of both φ and τ were normalized
to T, the undisturbed contraction interval measured as the
average of several full cycles before the pulse. Contraction
waves always travelled distally, owing to the ICC natural
frequency gradient (Parsons & Huizinga, 2015, 2016).
Therefore as each contraction wave approached the pulse
time, φ decreased while d increased, generating a diagonal
line of sample points across the (φ, d) plane (Fig. 5B).
The contraction wavelength (λ) was the span of d covered
by this line. Multiple waves, measured over many pulses,
generated multiple lines that filled out the (φ, d) plane in
a diagonal, raster-like pattern (Fig. 5C). The set of points
can be thought of as a function, τ(φ, d), a spatial extension

of the more usual PRC, τ(φ) (see Fig. 1 of Parsons &
Huizinga, 2016).

If τ = 1, the oscillator is said to be refractory (the
contraction has proceeded as if there were no pulse). If
τ < 1, the oscillator is phase advanced (the contraction
has occurred earlier than it otherwise would). If τ > 1, the
oscillator is phase delayed (the contraction has occurred
later than it otherwise would). The τ(φ, d) of one 20 min
pulse period (Fig. 5C and D) had an arrowhead-shaped
region of phase advance pointed along the φ axis,
symmetrical about d = 0, its base beginning at φ= 0 and its
tip ending at approximately φ = 0.75. The phase advance
corresponded to the wave speeding up, so that it bent left in
the map towards the pulse time (compare Fig. 5A and B).
In the wedge at the arrowhead’s base was a peak of phase
delay at φ � 0.2 (Fig. 5C and D). Delay resulted from
either the wave of the first initiating singularity ‘bending
right’ from its natural line (τ < 1 + φ) or a gap between
the first terminating–initiating singularity pair (τ > 1 + φ;
τ = 1 +φ is ‘full phase delay’, the blue line in Fig. 5E and F).

1:1 2:2 3:3

1:0 2:1 3:2

term

init

A

2 s

5 mm

DB C

Figure 3. Electrical field stimulation responses classed by singularity numbers
A, example responses to single pulses of electrical field stimulation. Green dotted lines indicate the pulse
time (vertical) and electrode position (horizontal). Red lines indicate detected contractions (diameter
minima). Black dotted lines indicate ‘natural lines’ of contractions. Responses were classed as m:n (upper
right corner of each panel), where m was the number of terminating contraction phase singularities
(term) and n was the number of initiating singularities (init); m − n is the winding number or topological
charge of the response. B, a 3:3 response formed by a clean break in contraction waves. C, a 3:3 response
when the waves speed as they reach termination. D, a 2:1 response resulting when the last terminating
wave of a 3:3 response advances onto the natural line of the wave before it.
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When the PRC is used to calculate the interaction
function for a weakly coupled oscillator model, the
convention is that the start of the PRC (φ= 0) corresponds
to the period of its maximal influence on another
oscillator, the maximum of its impulse function. In
bioelectrical oscillators, this is the period of membrane
potential depolarization, the slow wave in ICC. As a result
of the inactivation kinetics of the voltage-dependent ion
channels that cause the depolarization, this period is also
the refractory period of the oscillator. In our case, the

%
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80 V
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80 V
30 ms
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B

C

% m > 0 

% m > n 

Figure 4. Frequency of response classes
A, percentage frequency of m:n response classes with
aggregation according to pulse amplitude and duration. NE is
non-equilibrated (response could not be classed because of a
disturbed wave pattern before stimulation). ‘Other’ is any
other m:n than those indicated. B, frequency of m > 0
responses (all those with singularities). C, frequency of m > n
responses (dislocations). Each bar in B and C is the mean ± SEM
of N = 12 pulse periods.

refractory period began after the phase advance tip at
φ � 0.75. This would suggest that depolarization begins a
quarter of a cycle before maximal contraction (diameter
minimum) at φ = 0. To keep with convention, we shifted
the φ axis, φ� = mod(φ + 0.25, 1), so that τ(φ�, d) shows
the refractory period at the start of the cycle (compare
Fig. 5E and F).

The PRC form varied considerably (Fig. 6). Phase delay
varied from zero, where the responses were dominantly 0:0
(Fig. 6A) to τ = 2 with m > 0 responses (Fig. 6B and C).
The width of the phase advance arrowhead varied from 2 to
3 cm. In some cases, the arrowhead was asymmetrical, one
arm having greater advance than the other (Fig. 6B). The
more advanced arm was usually the distal (+d), as the wave
continued distal to the electrode without terminating,
speeding ever more while φ decreased, and so increasing
phase advance (right-hand panel of Fig. 6B).

There was no apparent dependence of τ(φ�, d) on either
the pulse duration or amplitude over the range we gave.
For each pulse period (set of pulses of constant amplitude
and duration), we calculated the mean τ for all delayed
points (τ > 1.2) and all advanced points (τ < 0.8; Fig. 7).
There were no significant changes (none with P < 0.05)
in these means with pulse amplitude and duration, as
assessed by multiple Student’s paired t tests and two-way
ANOVA.

State space

A limit cycle has a basin of attraction, the part of state space
where all trajectories eventually reach the limit cycle. For
each point within the basin, one can define the ‘latent’
or ‘asymptotic’ phase, φlat(x) = 1 − (t mod 1), where x
is the point’s co-ordinate vector and t is the time taken
by the trajectory from x to the neighbourhood of some
point x′ on the limit cycle, normalized by the period of the
cycle, i.e. φlat is a measure of the time taken from any point
in state space to a specific point on the limit cycle. The
importance of φlat follows from the continuity equation
(Kuramoto, 1984), as follows:

dφlat

dt
= 1 = ∇φlat · ẋ = ‖∇φlat‖ ‖ẋ‖ cos θ (2)

The gradient of φlat (�φlat) is an inverse measure of
the state space vector field (ẋ; Fig. 1E), and trajectories
move up this gradient at a constant rate of ascent (of 1).
The φlat gradient can be visualized as isochrons, n − 1
dimensional hypersurfaces of constant φlat, where n is the
number of dimensions of state space (Fig. 1F; Winfree,
1980; Glass & Winfree, 1984). By analogy to a geographical
map, the isochrons are contours on a map of φlat. A
trajectory cuts across the isochrons (at an angle of θ to their
normal), and the more closely spaced the isochrons, the
slower the trajectory (smaller ẋ). Isochrons are arranged

C© 2017 The Authors. Experimental Physiology C© 2017 The Physiological Society
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around the limit cycle like spokes on a wheel and converge
at the unstable equilibrium that threads the cycle (Fig. 1F).
But the spokes are rarely straight. They tend to twist
and contort, often in a spiral pattern. This ‘foliation’
of isochrons is a unique fingerprint of the state space
(Winfree, 1980; Langfield et al. 2014).

The PRC measures φlat in the following manner. First
an x′ neighbourhood is chosen that can be identified
objectively in the experiment. In our case, this was the
diameter minimum. Next, one uses a stimulus pulse to
displace the trajectory from some point on the limit cycle

(xL) to some point off it (xD). If, as in our case, the stimulus
is electrical, the displacement will be predominantly along
the axis of an electrical state variable, such as membrane
potential. In terms of the PRC, τ(φ), it follows that:

φlat(xL) = φ (3)

φlat(xD) = 1 − [(τ − φ) mod 1] (4)

At a fixed displacement (stimulus strength) with varying
φlat(xL), φlat(xD) is measured around a ring in state space,
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Figure 5. Measurement of the phase response curve (PRC)
A, Dmap showing the 1:1 response to an 80 V, 30 ms pulse. Vertical and horizontal black lines indicate
the pulse time and electrode position, respectively. Red lines are diameter minima used to calculate φ

and τ at each position along the spatial axis (d). B, PRC. τ is coded as the colour of each sample point in
the (φ, d) plane. Each contraction wave (w1, w2, w3) traces out a diagonal of points across (φ, d) within
the region of d where it is the last wave to precede the pulse (dotted orange lines for w2). This region
corresponds to the cycle wavelength (λ) at the pulse. C, PRC filled out by data from 22 more pulses of
the same amplitude and duration. D, τ(φ, d) contour map calculated from the scatter plot (see Methods)
with the same colour scale. The arrowhead-shaped region of phase advance (red contours) has a tip (tp)
and two arms, proximal (pa) and distal (da). In the wedge between arms is a phase delay peak (dy). E,
PRC. |d| is coded as the colour of each sample point in the (φ, τ) plane. Black dots are the points at d = 0.
Red and blue lines indicate full phase advance and delay, respectively (see Fig. 1 of Parsons & Huizinga,
2016). F, PRC shifted along φ to meet convention (see Results).
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displaced from the limit cycle by ||xD − xL||. Electrical
field strength, and therefore displacement, decreases as the
inverse square of distance from the electrodes (Coulomb’s
law), as follows:

‖xD − xL‖ ≈ |d| −2 (5)

Thus φlat(xD) is measured across the surface of a tube
that extends out from the limit cycle, as distance from the

electrode decreases (Fig. 8A; see also Fig. 11, chapter 6 of
Winfree, 1980). The (φ, d) plane of the PRC is this tube
cut along its length, opened flat and reflected along d = 0
(Fig. 8B).

We transformed experimental τ(φ�, d) to φlat(φ�, −|d|)
using eqn (4). To visualize isochrons (contours of φlat),
we used a colour scale for φlat that repeated over a set
of rainbow colours. The isochrons then follow the bands
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Figure 6. Variation in PRCs
Three PRCs from different intestines. A, phase advance only; 24 pulses at 80 V and 15 ms. B, asymmetrical
phase advance arms; 23 pulses at 50 V and 15 ms. C, large phase delay; 23 pulses at 50 V and 30 ms. Far
left, |d| coded as the colour of each sample point in the (φ�, τ) plane. Black dots are the points at d = 0.
Vertical dotted lines indicate φ = 0. Middle left, τ coded as the colour of each sample point in the (φ�,
d) plane. Middle right, contour plots of the same. Far right, example Dmap responses. Red lines indicate
detected contractions. Green horizontal and vertical dotted lines are the electrode position and pulse
time, respectively.
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of colour. This method was used by Winfree (Winfree,
1987). On the (φ�, −|d|) plane, isochrons will twist
to the left with phase advance [φlat(xD) > φlat(xL)], to
the right with phase delay [φlat(xD) < φlat(xL)], and
will be vertical when refractory. In the refractory region,
isochrons were parallel with the d-axis (Fig. 9A–C). Near to
the phase delay peak, isochrons twisted left, corresponding
to the surrounding arms of the phase advance arrowhead
(Fig. 9A–C). The experimental sample points were too
noisy and not dense enough in the (φ�, d) plane to make
a clearer picture of state space on the displacement tube.
This was especially true near to the phase delay peak, where
points of divergent τ or φlat were clustered together. To gain
a clearer understanding of the relationship of the PRC to
state space, we made a model of the experimental τ(φ�, d)
from the summation of four two-dimensional Gaussians
(Fig. 9D). This was then transformed to φlat(φ�, −|d|).
The foliation was much clearer in the model (Fig. 9F).
Isochrons twisted left at the arms of the phase advance
arrowhead (Fig. 9E and F) and then twisted back right
at the boundary with the phase delay peak. This back
and forth twist of isochrons has been called a ‘boomerang
turn’ by Osinga & Moehlis (2010). The isochrons twisted
close together about the phase delay peak itself, indicative
of slow trajectories. Osinga & Moehlis (2010) called this
much denser region of isochrons the ‘slow manifold’.
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Figure 7. Phase response curve amplitude and pulse
amplitude and duration
A, mean of PRC points τ < 0.8 (phase advance). B, mean of PRC
points τ > 1.2 (phase delay). Each bar is the mean ± SEM of
N = 12 pulse periods.

Discussion

We have measured the PRC of ICC using the novel
approach of diameter mapping combined with electrical
field stimulation. The PRC consisted of a refractory region,
followed by phase delay, followed by phase advance. This
shape is reflected in the contraction response to a single
pulse, which can be classed by the wave singularities
generated. The PRC provides a window onto the state space
of ICC and has significant physiological implications, as
discussed below.

Physiology of the PRC

The shape of the ICC PRC (refractory, followed by delay,
followed by advance) seems to be ubiquitous in nature. It
is seen in the PRCs of circadian oscillations of diverse
species, the heart beat and the Krebs cycle (Winfree,
1980). As Pavlidis (1973) has remarked, ‘it turns out
that most curves obtained experimentally belong to a
small subset of all possible shapes of PRCs’. There is a
good reason for this. Biological rhythms are commonly
generated by a population of synchronized, oscillatory
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Figure 8. The displacement tube and the PRC
A, the displacement tube extends out from the limit cycle
along the axis of displacement. The tube might not be straight
because of non-linearities in the system. In our experiment,
maximal displacement (red ring) is at zero distance from the
electrode (d = 0). B, the (φ, d) plane of the PRC is the
displacement tube cut along φlat(x) = 0 (dashed grey lines),
unfurled and reflected along d = 0 (red line; compare with
Fig. 5B). A single contraction wave traces out a line of sample
points (pink line) that screws once around the displacement
tube’s circumference and is reflected where it crosses d = 0.

C© 2017 The Authors. Experimental Physiology C© 2017 The Physiological Society



1128 Exp Physiol 102.9 (2017) pp 1118–1132S. P. Parsons and J. D. Huizinga

cells; the sinus node, the thalamus, etc. This collective
rhythm is both more stable in the face of environmental
noise, perturbation and loss of oscillators and of larger
magnitude than could be achieved by a single cell. Phase
delay followed by advance is possibly the best way to
achieve synchrony within the population. In its guise as
the interaction function, the PRC gives the phase shift
of an oscillator as a function of the phase difference
between it and another, coupled oscillator (Schwemmer
& Lewis, 2012). With a small difference in phase between
oscillators, they can be irresponsive, refractory. If one
oscillator pushes too far ahead of another, it is delayed,
pulled back. If the oscillator is more than halfway ahead of
its neighbour, it makes more sense to advance and catch
the next oscillation of its neighbour. The importance of
a delay–advance PRC to synchrony was first analysed by
Hansel et al. (1995). They called this the ‘type II’ PRC, as
opposed to a ‘type I’ PRC, which only phase advances and
tends to desynchronize.

Previously, we made a weakly coupled oscillator model
of the ICC network (Parsons & Huizinga, 2016). For the
interaction function, we used the PRC of slow waves in
the rabbit small intestine measured by Cheung & Daniel
(1980) with intracellular microelectrodes. This PRC was
refractory up to φ � 0.5. In the mouse, we have found
that the refractory period is only a quarter of a cycle.
This difference is likely to be a matter of species, rather
than methodological. For the cardiac cycle, the absolute
length of the refractory period first increases with cycle
length before reaching a plateau, and so thereafter, the
refractory period decreases as a fraction of cycle length
(Janse et al. 1998). Across mammalian species, mean cycle
length gets smaller as the species’ body size does, but in the
upper ranges of cycle length where the refractory period
plateaus, there is significant overlap in cycle length (Janse
et al. 1998). At this overlap, the refractory period is always
shorter in smaller animals; hence, smaller animals have
both shorter fractional and absolute refractory periods.
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data were collated in this way to maximize sample density. B, τ(φ�, −|d|). C, φlat(φ�, −|d|) calculated from
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Dashed area marked sm, slow manifold; and bt, boomerang turn.
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This is an example of an allometric law (biological scaling
relationship), of which there are many (West et al. 1997).
Dawson (2014) has made a detailed derivation of the
allometric law of heart rate, but we are not aware of
anyone who has studied the theoretical underpinning
of refractory period scaling, nor are we aware of any
allometric studies of the intestine slow wave, but from
our mouse data compared with the rabbit it appears that
a similar relationship holds to the heart for both cycle
length and refractory period. The cycle length in the
mouse intestine was 1.2–1.5 s as against 3–4 s in the rabbit
(Cheung & Daniel, 1980).

In the mouse, the end of the refractory period
(φ� = 0.25) was coincident with maximal contraction
(minimal diameter). In gastric muscle preparations when
slow waves were recorded by intracellular electrode,
simultaneously with contraction, it was found that
contraction rises through the depolarization and reaches a
maximum at the return to resting potential (Szurszewski,
1975; see also Lammers, 2005). It appears to be the
general case for transient cellular depolarization (any
‘action potential’) that the return to resting potential is
coincident with the end of the refractory period. It follows
by syllogism that the end of the slow wave refractory
period should be coincident with maximal contraction,
in agreement with our data.

The state space vector field, and thus PRC shape, is
determined by the properties of the ion channels expressed
by the ICCs, their kinetics and dependence on voltage
and second messengers, such as intracellular calcium.
For instance, the refractory period of an action potential
(slow wave in ICCs) ends as the depolarizing (inward
current-generating) ion channels leave inactivation. In
Hodgkin–Huxley type cell models (see next section), the
PRC shape can be altered by changing the activation
kinetics and reversal potentials of ion channels (Tsumoto
et al. 2006; Izhikevich, 2007). Imtiaz et al. (2006) measured
the PRC of an ICC model cell that had the same
refractory–delay–advance shape as our experimental PRC.
However, they did not show the effect of parameter
changes, other than stimulus strength, on PRC shape.

State space

The Hodgkin–Huxley model of the squid axon action
potential has provided the template for a family of
models of electrically ‘excitable’ cells. One ODE (state
variable) for membrane potential (V) summates the
current contributions from one or more Ohmic ion
channels (dV/dt = �I/C where I is channel current
and C is membrane capacitance). The other state
variables are the voltage-dependent gating (activation
or inactivation) variables for these ion channels and
have non-linear ODEs. The Hodgkin–Huxley model has
two voltage-dependent ion channels, with three gating

variables and thus a four-dimensional state space. The
Morris–Lecar model also has two voltage-dependent
channels, but only one gating variable. One channel
reaches activation instantaneously. This reduction of the
state space dimension to two is very useful for analysis and
visualization of the state space. Dimension reduction can
also be achieved by abstraction of the Hodgkin–Huxley
template. Instead of describing Ohmic channels, the V
ODE is a polynomial with a cubic V term. The cubic
term reproduces the non-linearity of the gating variables
of the Hodgkin-Huxley template, as reflected in the
cubic V-nullcline (the line through state space where
dV/dt = 0). The gating variable ODEs are themselves
linear. Such abstracted membrane models include the
Fitzhugh–Nagumo and Hindmarsh–Rose.

Both Hodgkin–Huxley and abstracted models produce
oscillations over large ranges of parameter values
(regions of their parameter space). Winfree computed
the isochrons for a limit cycle in the Fitzhugh–Nagumo
(Box C, Chapter 6 of Winfree, 1980). As the isochrons
converged on the unstable equilibrium, they twisted into
a complex spiral of interdigitating, petal-like folds. With
modern computing power, Osinga and colleagues have
mapped the equilibrium point foliation in much greater
detail for both the Fitzhugh–Nagumo (Langfield et al.
2014) and a Hodgkin–Huxley template model (Osinga
& Moehlis, 2010). Winfree held out the possibility that the
‘ornate structure of isochrons near their convergence point
[might] provide an experimental distinction between such
oscillators’ (Box D, Chapter 6 of Winfree, 1980). However,
he pointed out that this distinction could be difficult to
discern owing to the density of the foliation structure,
variation between samples and the noise and imprecision
inherent in experimental measurement. This is born
out by our results (Fig. 9C). Nevertheless, the grosser
isochron structure, away from the equilibrium point, can
still provide a rough constraint to model building. In
comparison to the model PRC, it is clear that the unstable
equilibrium point corresponds to the centre of the phase
delay peak.

The equilibrium point was called by Winfree the
‘blackhole’, because if the trajectory is brought to this
point by a pulse, then oscillations will stop. This could
be one explanation for why contraction waves broke
into singularities, the gap between them being where
oscillators ‘disappeared into the hole’ (Fig. 3). The stopped
ICCs restarted only because they are coupled and so
could be restarted by their still oscillating neighbours.
An alternative explanation is that the oscillators in the
gap were still oscillating but in a region close about the
equilibrium point and below contraction threshold (V
needs to go above a certain value for contraction of the
muscle), from which the trajectory took a long time to
escape. We cannot find any explanation for why either of
these mechanisms would select between giving an m = n
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response or a dislocation. Perhaps this has more to do with
the coupling between oscillators.

The success of our weakly coupled oscillator model of
the intestine (Parsons & Huizinga, 2016) in modelling
contraction waves in the absence of neural activity suggests
that the ICCs do not leave their limit cycle in these
conditions. It is possible that neural stimuli may force ICCs
off their limit cycle and so produce gaps in contraction
waves or dislocations, due to trajectories pushed onto
the slow manifold about the equilibrium point. Both
gaps and dislocations are seen experimentally in the
absence of neural block by lidocaine (S.P. Parsons and
J.D. Huizinga, unpublished data). Dislocations are also
seen in the presence of neural blockade (Parsons &
Huizinga, 2015, 2016), associated with frequency steps,
and so can certainly arise from trajectories confined to the
limit cycle. Both frequency-step-associated and neurally
evoked dislocations should not be considered as ‘ectopic
pacemakers’ of pathophysiological significance, but rather
the natural consequence of the dynamics of coupled ICCs.

Type I or II

In some cases, there was no phase delay peak (Fig. 6A)
corresponding to a type I PRC. Different shapes of PRCs
can result from different models or model parameters.
For the latter, it is typical to talk in terms of what
bifurcation the model is near. A bifurcation is a change
in the numbers or types of equilibria points or cycles,
brought about by a change in parameters, that qualitatively
changes the behaviour of the system (Strogatz, 2015).
Hansel and Ermentrout have suggested that the type II
PRC is characteristic of a limit cycle with parameters
near to a supercritical Andronov–Hopf bifurcation and
the type I PRC is near to a saddle node on invariant
circle bifurcation (Hansel et al. 1995; Ermentrout, 1996).
This could be the case here. Some regions of the intestine
may be near different bifurcations owing to variation in
some physiological parameter, perhaps a channel reversal
potential. However, the simpler explanation for the lack of
a phase delay peak is that in these cases displacement was
not big enough to reach near the equilibrium point. Where
there was a phase delay peak, it was surrounded at smaller
displacement (greater distance from the electrode) by the
arms of the phase advance arrowhead. In cases without the
phase delay peak, it is reasonable to assume that maximal
displacement was less, and so these arms are all that were
seen.

Recognizing that the τ(φ) PRC shape depends on the
amount of displacement from the limit cycle is important
when modelling. In our weakly coupled oscillator model,
we used an interaction function with only phase advance,
according to the PRC of Cheung and Daniel (1980). This
was the correct choice, as the interaction function is
supposed to reflect the PRC at infinitesimal displacement

from the limit cycle (the oscillators are weakly coupled)
and our data show that at this displacement phase is only
advanced.

Coupling and PRC measurement

The coupling between ICCs is both the necessity of our
experiment and its major limitation. Without coupling
there would be no contraction waves and so nothing to
measure. With contraction waves, as opposed to recording
slow waves from a single point (Cheung & Daniel, 1980),
one can measure the PRC at different distances from the
electrode and so measure over a displacement tube rather
than at a single displacement. However, the PRC should
be measured ideally for a single, uncoupled oscillator if
one wants to know the state space or interaction function
of that individual oscillator. Following displacement by
the pulse, ICCs will inevitably influence each other in
their trajectory back to the limit cycle. This should be a
small effect, for a number of reasons. First, the success
of the weakly coupled oscillator model of intestinal waves
(Parsons & Huizinga, 2016) indicates that ICCs are weakly
coupled. If they cannot strongly perturb each other from
their limit cycles, then they are unlikely to have a strong
effect on each other’s trajectories off the limit cycle.
Second, the strength of interaction between oscillators is
reflected in the time scale over which those oscillators will
synchronize or desynchronize and so form patterns. It
took the disturbance caused by electrical field stimulation
over half a minute to re-equilibrate, hence the 50 s we gave
between pulses. Measurements of τ were made within 1.5 s
of the pulse. Third, neighbouring ICCs start off near each
other on the limit cycle and so should be displaced to the
same point and mostly follow each other back to the limit
cycle. Any displacement from the uncoupled trajectory
will be attributable to longer range coupling, which decays
quickly.

Phase response curves have not become a standard
experimental tool outside of the circadian rhythm field
(Castellanos et al. 1984; Goldberg et al. 2007). One reason
for this could be the high degree of precision required
in the presence of instrumental and environmental noise
typical of biological systems. This problem increases at
shorter time scales. Precision is high for circadian scales,
but for neural oscillators, with millisecond intervals, PRCs
may be almost lost in the noise (Goldberg et al. 2007). Our
experimental system and time scale appear to be slightly
above the threshold to obtain reliable information about
dynamics and state space.

Summary

The PRC is a picture of the state space of an oscillator,
revealing its dynamics. It can be used to guide biophysical
models and used directly in weakly coupled oscillator
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models via the interaction function. As far as we are aware,
we are the first to have measured a PRC continuously
over different displacements, and thus experimentally
measured an isochron structure and foliation, since
Winfree’s ‘pinwheel experiment’ on Drosophila pupa
emergence (Winfree, 1980). The shape of the ICC
PRC, refractory followed by phase delay and advance,
is common to most biological oscillators, reflecting
an evolutionary convergence on dynamical principles
that allow for synchronization within an oscillator
population.
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